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Linear Cryptoanalysis of the Simplified AES Cipher

Modified by Chaotic Sequences
José A. P. Artiles, Daniel P. B. Chaves, Cecilio Pimentel

Abstract—This article introduces new symmetric key architec-
tures based on a randomized version of the Simplified Advanced
Encryption Standard (SAES). It is proposed a new technique to
randomize the S-boxes of the original SAES employing chaotic
sequences. Then, we study the linear criptanalysis of the proposed
schemes. It is shown that, with the introduction of chaotic
sequences, the adversary needs a larger number of pairs of
plaintext and ciphertext to discover the bits of the key compared
to the required by the SAES. Given these results, it is possible
to evaluate the improvement of the proposed technique against
linear cryptanalysis as compared to the original AES algorithm.

Index Terms—Block ciphers, chaotic sequences, linear crypt-
analysis, security analysis, simplified advanced encryption stan-
dard.

I. INTRODUTION

The Advanced Encryption Standard (AES) is the standard

algorithm adopted by the National Institute of Standards and

Technology (NIST) as its current recommendation for the

symmetric key encryption algorithm [1]. The input block

has 128 bits and the number of rounds varies depending on

the key size, that is, an AES cipher with 128, 192 or 256-

bit key works with 10, 12, or 14 rounds, respectively [2].

The AES has four units per round: SubBytes, ShiftRows,

MixColumns, AddRoundKey and allows an efficient software

implementation [3]–[5]. An important step of this algorithm is

the SubBytes unit since it provides confusion in the ciphertext

and is carried out by the S-boxes.

In general, the S-boxes are not sufficiently secure against

cryptanalysis due to their rigid architecture [2]. This means

that identical plaintext blocks are encrypted to identical ci-

phertext blocks when the same key is used. Therefore, tech-

niques to improve the security of this unit have a prominent

impact on the security of a block cipher. We propose in

this work a randomized S-box employing chaotic sequences.

These sequences are characterized by irregularity, aperiodicity,

decorrelation, and broadband and can be generated through

simple deterministic dynamical systems [6].

A set of security metrics (e.g. Shannon entropy, correlation

coefficient, key sensitivity) [4], [7], [8] is commonly used to

evaluate the randomness of the ciphertext and its capacity to
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resist statistical attacks. Other analyses should also be per-

formed on cipher algorithms, such as their robustness against

linear cryptanalysis (LC). This cryptanalysis is based on linear

approximations of the nonlinear operations performed by the

S-boxes. A precursor work in LC was introduced by Matsui [9]

in 1992. In 1993, this technique was used as an attack on DES

[10].

The computational effort to evaluate the effectiveness of

the LC in the original AES algorithm can be prohibitive, as

a solution, a simplified AES algorithm (SAES) was proposed

in [11]. It has 2 rounds and the data input block is shorter

than the original AES, without losing the essence of the

original algorithm. This means that, by understanding the

SAES algorithm and expanding its concepts, the behavior of

this cryptanalysis in the AES algorithm can be understood. The

objective of this work is to propose new block cipher architec-

tures based on the SAES S-box modified by chaotic sequences

and study the LC for these ciphers. The new schemes, namely

SAES1, SAES2, SAES3, establish a compromise between

computational complexity and security. It is shown that the

new ciphers are considerably more robust against LC than the

original SAES.

The rest of this article is organized in four sections. Sec-

tion II describes the SAES algorithm. The LC for the SAES

system is discussed in Section III and this analysis is extended

to the algorithms SAES1, SAES2, SAES3 in Section IV. A

comparison of the robustness of these systems against LC

is made in this section. The conclusions of this work are

summarized in Section V.

II. PRELIMINARIES

A. Simplified AES algorithm

In the SAES [11], each input block (plaintext) has 16

bits {x0, · · · , x15} and the original key also has 16 bits

{k0, · · · , k15}. This cipher has two rounds, thus 2 sub-

keys are created from the original key, {k16, · · · , k31} and

{k32, · · · , k47}, totalizing 48 key bits.

In the first round, the original key is added (module 2) to the

plaintext. The SAES has the same units as the original AES al-

gorithm (SubBytes, ShiftRows, MixColumns, AddRoundKey).

The second round has two units: SubBytes and AddRoundKey,

as illustrated in Fig. 1. The output of SAES is the ciphertext

{y0, · · · , y15}. The operations performed in each round are

described next.

1) SubBytes: The input bits to the SubBytes unit are given

by ai = xi⊕ki, for {i = 0, · · · , 15}, where ⊕ denotes addition

modulo 2. This unit comprises 4 identical S-boxes operating in

parallel, where each S-box has 4 input bits and 4 output bits.
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Fig. 1. Block diagram of the SAES algorithm with two rounds.

TABLE I
INPUT-OUTPUT BITS OF AN S-BOX

Input Output Input Output
{0, 0, 0, 0} → {1, 0, 0, 1} {1, 0, 0, 0} → {0, 1, 1, 0}
{0, 0, 0, 1} → {0, 1, 0, 0} {1, 0, 0, 1} → {0, 0, 1, 0}
{0, 0, 1, 0} → {1, 0, 1, 0} {1, 0, 1, 0} → {0, 0, 0, 0}
{0, 0, 1, 1} → {1, 0, 1, 1} {1, 0, 1, 1} → {0, 0, 1, 1}
{0, 1, 0, 0} → {1, 1, 0, 1} {1, 1, 0, 0} → {1, 1, 0, 0}
{0, 1, 0, 1} → {0, 0, 0, 1} {1, 1, 0, 1} → {1, 1, 1, 0}
{0, 1, 1, 0} → {1, 0, 0, 0} {1, 1, 1, 0} → {1, 1, 1, 1}
{0, 1, 1, 1} → {0, 1, 0, 1} {1, 1, 1, 1} → {0, 1, 1, 1}

The output bits are obtained through nonlinear and reversible

operations defined in Galois field GF(24), generated by the

primitive polynomial P (x) = x4 + x + 1. Let a0, a1, a2, a3
be the input to an S-box. Initially, the multiplicative inverse

of this sequence is determined in GF(24) (the sequence 0000

is not invertible, so the corresponding output is 0000). The

inverted input sequence a−0 , a
−

1 , a
−

2 , a
−

3 is used to obtain the

output of the S-box (b0, b1, b2, b3) as
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The mapping between the input and output bits of an S-box

is shown in Table I.

2) ShiftRows: In this unit, the sequence

{b0, · · · , b3, b4, · · · , b7, b8, · · · , b11, b12, · · · , b15} is mapped

into {b0, · · · , b3, b12, · · · , b15, b8, · · · , b11, b4, · · · , b7}.

3) MixColumns: The MixColumns unit performs a mix-

ture of bits from the output of distinct S-boxes. This is the

major diffusion step in the SAES. This assignment is given

by [11]

c0 = b0 ⊕ b14 c8 =b6 ⊕ b8

c1 =b1 ⊕ b12 ⊕ b15 c9 =b4 ⊕ b7 ⊕ b9

c2 =b2 ⊕ b12 ⊕ b13 c10=b4 ⊕ b5 ⊕ b10

c3 = b3 ⊕ b13 c11=b5 ⊕ b11

c4 = b2 ⊕ b12 c12=b4 ⊕ b10 (2)

c5 = b0 ⊕ b3 ⊕ b13 c13=b5 ⊕ b8 ⊕ b11

c6 = b0 ⊕ b1 ⊕ b14 c14=b6 ⊕ b8 ⊕ b9

c7 = b1 ⊕ b15 c15=b7 ⊕ b9.

4) AddRoundKey: In this unit, the output bits of the

MixColumns unit are added to the subkey bits {k16, · · · , k31},

and this finalizes the first round. In the second round, the

output bits of the SubBytes unit {b′0, · · · , b′15} are added to

the subkeys bits {k32, · · · , k47} to generate the ciphertext

{y0, · · · , y15}, that is

yi = b′i + ki+32 (3)

for i = 0, · · · , 15.

5) Subkeys Schedule: Four S-boxes are used to obtain the

two subkeys from the original key. These subkeys are given

by

k16 = k0 ⊕ l0 ⊕ 1 (4)

ki = ki−16 ⊕ li−16, i = 17, 18, · · · , 23
ki = ki−16 ⊕ li−24, i = 32, 33, 36, · · · , 39

k34 = k18 ⊕ l10 ⊕ 1

k35 = k19 ⊕ l11 ⊕ 1

ki = ki−8 ⊕ ki−16, i = 24, 25, · · · , 31, 40, 41, · · · , 47

where (l0, · · · , l15) are the outputs of the 4 S-boxes, being

related to the original key as

S(k12, k13, k14, k15) = l0l1l2l3

S(k8, k9, k10, k11) = l4l5l6l7 (5)

S(k28, k29, k30, k31) = l8l9l10l11

S(k24, k25, k26, k27) = l12l13l14l15.

It is worth observing that sixteen key bits determined by the

last line in (4) are linear combinations of other key bits.

Therefore, to obtain the 48 bits of the key it is only necessary

to determine 32 of such bits.

B. Chaotic Maps

A binary sequence obtained from an one-dimensional

chaotic maps is given by the iteration of a nonlinear and

noninvertible function f(x), under an initial condition x0.

Initially, a discrete-time series {xi}∞i=0 is generated according

to [6]

xn = f(xn−1), n = 1, 2, 3, . . . , (6)



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 34, NO.1, 2019. 94

generating an orbit {xn}∞n=0 = {x0, f(x0), f(f(x0)), . . .} of

f(x) starting at the initial condition x0. Then, a binary se-

quence {zn}, denoted by binary chaotic sequence, is obtained

from {xn} via hard quantization [12].

Chaotic maps are known to generate uncorrelated, noise-

like, aperiodic real valued sequences [6]. An important prop-

erty of chaotic systems is that they are deeply sensitive

on the initial condition of the system, meaning that nearby

trajectories separate exponentially fast. A widely used metric

to measure this sensitivity on initial conditions and determine

whether the map evolves to a stable or chaotic behavior is

the Lyapunov exponent. A chaotic systems has necessarily a

positive Lyapunov [6].

In cryptography applications of chaotic systems, the value

of x0 is obtained from the original key. For a block cipher

with key size of 128 bits, as the AES, the bits of this key

are clustered into a block of 16 bytes, v1, v2, · · · , v16 (where

vi is the decimal representation of each byte) and let m′

0 be

defined as m′

0 =
∑16

i=1

vi

256
. Then, x0 = m′

0 − ⌊m′

0⌋, where

⌊·⌋ is the floor function. The first 200 samples of the orbit

generated from x0 are discarded to eliminate the transient

behavior. Examples of chaotic maps f : [−1, 1] → [−1, 1]
include the cubic map f(x) = 4x3 − 3x and the logistic map

f(x) = 4x(1 − x).
Due to the noise-like behavior of chaotic sequences it is

hard to obtain useful information about the behavior of the

sequences generated by a chaotic map from the observation

of the time evolution. Despite being deterministic and defined

by difference equations a chaotic map with uncertain initial

condition can be characterized as a stochastic process, where

the orbit of each initial condition under the map is a realization

of the process.

III. LINEAR CRYPTOANALYSIS

The LC explores linear relationships between the input and

output bits of the S-boxes. Since the S-boxes are the nonlinear

units of the SAES, the best that can be done is to find

linear relations between input and output with distinguished

probability. The LC is a known plaintext attack, that is,

the adversary knows a set of pairs of plaintexts and the

corresponding ciphertexts obtained with the same key. The

idea of LC is to find linear equations of the form

∑

k∈S1

xk ⊕
∑

l∈S2

yl =

(

∑

m∈S3

km

)

⊕ t (7)

with probability greater than 0.5, where t a bit with value 0 or

1, xk is the k-th bit of plaintext, yl is the l-th bit of ciphertext,

km represents the m-th bit of the key and each Si is a subset

of {0, · · · , 15}.

For each equation, the adversary evaluates the left-hand

side of (7) for each plaintext-ciphertext pair and estimates the

probability that the right-hand side is correct. Let pℓ be the

probability that the ℓ-th equation is correct in such a way that

the bit t is chosen so that pℓ ≥ 0.5. If a cipher shows a

trend that (7) is satisfied with probability close to 1/2, it is

an evidence that it is robust for this cryptanalysis. The further

away the probability pℓ is from 1/2, the more effective is the

LC.

TABLE II
NUMBER OF EQUATIONS SATISFIED WITH PROBABILITY pℓ

pℓ = 0.5 pℓ = 0.5625 pℓ = 0.6252 pℓ = 0.75

152 32 60 12

A. Linear Cryptoanalysis of the SAES

This section analyzes the LC for the SAES introduced

in Subsection II-A. The main idea is to find linear equa-

tions corresponding to the input and output bits of the S-

boxes that have probability greater than 0.5. Let us consider

an S-box where the input and output bits are related as

S(a0a1a2a3) = b0b1b2b3. There are 256 equations for all

possible combinations of the input and output bits of this S-box

and the following 12 equations occur with probability 0.75

a0 ⊕ b2 =0 a1 ⊕ b0 ⊕ b3 =0

a1 ⊕ b1 =0 a2 ⊕ a3 ⊕ b3 =1

a0 ⊕ a1 ⊕ b1 ⊕ b2 ⊕ b3 =1 a3 ⊕ b0 =1 (8)

a0 ⊕ a1 ⊕ a2 ⊕ a3 ⊕ b1 =0 a2 ⊕ b2 ⊕ b3 =1

a2 ⊕ b1 ⊕ b3 =1 a1 ⊕ a2 ⊕ b0 ⊕ b1=1

a0 ⊕ a1 ⊕ b0 =1 a0 ⊕ b0 ⊕ b1 =1.

The number of equations for each possible probability is

shown in Table II. Considering 4 S-boxes, 48 equations are

obtained with probability 0.75 in the first round that depend

on the plaintext bits, the key bits, and the output bits of

this unit {b0, · · · , b15}, as for example, b5 ⊕ x5 = k5 and

b8 ⊕ b11 ⊕ x9 = k9.

The adversary knows pairs of plaintext {x0, · · · , x15} and

ciphertext {y0, · · · , y15}, thus, it is necessary to perform the

same procedure in the second SubBytes unit and combine the

resulting equations with those obtained in first SubBytes unit

through linear operations, that is, we write {a′1, · · · , a′15} de-

pending on {b0, · · · , b15}, and in the same way {b′0, · · · , b′15}
as a function of {y0, · · · , y15}, thus 48 equations are obtained

in the second round, each having probability 0.75, such as

b5 ⊕ b8 ⊕ b11 ⊕ y12 ⊕ y15 = k29 ⊕ k44 ⊕ k47 ⊕ 1. To obtain

equations of the form given in (7), a combination (sum module

2) of equations of each round must be performed, as for

example

b5 ⊕ x5 = k5
b8 ⊕ b11 ⊕ x9 = k9

b5 ⊕ b8 ⊕ b11 ⊕ y12 ⊕ y15 = k29 ⊕ k44 ⊕ k47 ⊕ 1

x5 ⊕ x9 ⊕ y12 ⊕ y15 = k5 ⊕ k9 ⊕ k29 ⊕ k44 ⊕ k47 ⊕ 1
. (9)

Since each equation in each round is satisfied with a certain

probability, in the following subsection the probability of an

equation obtained from the combination of other equations is

calculated.

1) Combination of equations: The equations obtained from

the S-boxes in the first and second rounds of the SubBytes

units are considered binary random variables. Let X and Y be

independent Bernoulli random variables associated with linear

equations obtained from distinct S-boxes of the SAES (in the

same round or in distinct rounds). The event X = 1 means

that the equation is satisfied. The same holds for Y . Let p1 ,
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Pr(X = 1) and p2 , Pr(Y = 1), where 0.5 < p1, p2 < 1.

Now let V be a Bernoulli random variable such that V = 1
means that the linear combination of equations associated with

X and Y is satisfied. Thus

Pr(V = 1) = Pr(X = 1, Y = 1) + Pr(X = 0, Y = 0)

= Pr(X = 1) Pr(Y = 1) + Pr(X = 0)Pr(Y = 0)

= p1p2 + (1− p1)(1− p2). (10)

When p1 = p2 = p, we obtain

q , Pr(V = 1) = 2p2 − 2p+ 1. (11)

For example, when p = 0.75, we get q = 2(0.75)2−2(0.75)+
1 = 0.625. It is important to note that 0.5 ≤ q ≤ p when p is

in the interval 0.5 ≤ p ≤ 1, since

q − p = 2p2 − 3p+ 1 = (2p− 1)(p− 1). (12)

For the valid interval of p, the term (p− 1) is negative while

(2p− 1) is positive, resulting that q − p ≤ 0.

Following an analogous reasoning, it can be shown that the

combination of equations with different probabilities is limited

by

q = p1p2 + (1− p1)(1 − p2) ≤ min(p1, p2). (13)

Therefore, the probability of the combination of equations with

different probabilities is limited by the least of them, reaching

the lowest value equal to 0.5 when one of the probabilities

is 0.5. This method is adequate to determine an upper bound

on the probability that an equation be satisfied, when it is

generated from the combination of equations either from

distinct S-boxes in the same round or from distinct rounds.

Since, the plaintext bits and key bits that form these equations

are independent binary random variables.

The combination of equations obtained in the first and

second rounds of the SubBytes units results in equations of the

form given in (7). Considering (9), the sum of b5 ⊕ x5 = k5
and b8 ⊕ b11 ⊕ x9 = k9 (obtained in the first round) results in

an equation with probability

q = 2p2 − 2p+ 1

= 2(0.75)2 − 2(0.75) + 1 = 0.625 (14)

that is added to b5⊕b8⊕b11⊕y12⊕y15 = 1⊕k29⊕k44⊕k47
(second round) resulting in an equation with probability

q1 = p1p2 + (1 − p1)(1− p2) (15)

= (0.75)(0.625) + (1 − 0.75)(1− 0.625)

= 0.5625.

Repeating this process for all the equations obtained in the

two SubBytes units, we obtain the 32 linearly independent

equations listed in the Appendix each one with probability

0.5625. An important question is how many pairs of plaintext-

ciphertext n are necessary for the adversary to break the

algorithm (with some reliability) using these 32 equations. We

consider in this work a reliability of 95%.

Let W be a random variable that models the proportion

of n pairs of plaintext-ciphertext for which the right hand

side of each equation in the Appendix is the correct, for a

certain key. Each pair of plaintext-ciphertext is a realization

of an experiment with probability of correct equal to q. Each

realization is independent and can be described by a binomial

distribution normalized by n. So, the average value of W is

q and its variance is

σ2 = q(1− q)/n. (16)

For the LC, it is desired that Pr(W ≥ 0.5). Using the

established reliability, we have that

Pr(W ≥ 0.5) =
32
√
0.95 = 0.9984.

For a sufficiently large n, W the Cumulative Distribution

Function (CDF) of W tends to the CDF of a normal random

variable. Defining a normal random variable Z = (W − q)/σ
with zero mean and unit variance, we have

Pr(W ≥ 0.5) = Pr

(

Z ≥ 0.5− q

σ

)

= Pr

(

Z ≥
√
n(0.5− q)
√

q(1− q)

)

= Pr

(

Z ≥ −
√
n(q − 0.5)
√

q(1 − q)

)

(17)

= 1−Q

(√
n(q − 0.5)
√

q(1− q)

)

= 0.9984

where Q(x) = 1/
√
2π
∫

∞

x
exp{−t2/2}dt is the Gaussian Q-

function. Therefore

Q

(√
n(q − 0.5)
√

q(1− q)

)

= 0.0016. (18)

For the case q = 0.5625, we obtain

Q(0.126
√
n) = 0.0016. (19)

The argument of the function Q(x) that satisfies (19) is 2.94,

then we obtain n = 544.55. In this way, 545 pairs of plaintext-

ciphertext are needed to discover the bits of the key with a

reliability of 95%. Thus, the LC is attractive compared to a

pure brute force attack for the SAES with two rounds. In

the next section, a similar analysis is performed for SAES

algorithms modified by chaotic sequences.

IV. LINEAR CRYPTOANALYSIS OF THE SAES MODIFIED

BY A CHAOTIC SEQUENCE

In this section, the complexity of the LC attack is analyzed

for three proposed algorithms based on the SAES with the

S-boxes modified by a chaotic sequence. These are called

SAES1, SAES2, SAES3.

A. SAES1

In this algorithm, the 4 output bits of each S-box are added

to a binary chaotic sequence h generated from a chaotic map.

Two chaotic bits z0 and z1 are used in the S-boxes of the

datapath and are represented in two equivalent forms; as a

vector (z0, z1) or as a polynomial c(x) = z0x + z1. The
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polynomial c(x) is multiplied by the primitive polynomial

p(x) = x3 + x + 1 in GF(24), obtaining a polynomial

h(x) = c(x)p(x) mod P (x), where P (x) = x4 + x + 1.

The coefficients of this polynomial form a sequence h =
(h0, h1, h2, h3). This mapping is given by

(z0, z1) → (h0, h1, h2, h3) (20)

(0, 0) → (0, 0, 0, 0)

(0, 1) → (1, 0, 1, 1)

(1, 0) → (0, 1, 0, 1)

(1, 1) → (1, 1, 1, 0)

Two chaotic bits (z2, z3) are used to obtain the bits of the

subkeys, totalizing four chaotic bits to encrypt a plaintext of

16 bits. To simplify the analysis, the same chaotic sequence

is used in the second round. It is observed from (20) that h0

and h2 are equal to z1, h1 is equal to z0, and h3 is equal to

z0 ⊕ z1. Therefore, the output bits of the S-boxes in the first

round of the SAES1 are related to the output bits of the SAES

algorithm as follows

[b̂i, b̂i+1, b̂i+2, b̂i+3] = [bi, bi+1, bi+2, bi+3]⊕[z1, z0, z1, z0⊕z1]
(21)

for i ∈ {0, 4, 8, 12}. In a similar way the output bits are

obtained in the second round (b̂′0, · · · , b̂′15).
In an anolog form, the subkeys (k̂16, · · · , k̂47) of the SAES1

are related to the corresponding bits of the SAES as

[k̂i, k̂i+1, k̂i+2, k̂i+3] = [ki, ki+1, ki+2, ki+3]⊕[z3, z2, z3, z2⊕z3]

for i ∈ {16, 20, 24, 28, 32, 36, 40, 44}. The ciphertext is ex-

pressed as

[ŷi, ŷi+1, ŷi+2, ŷi+3] = [yi, yi+1, yi+2, yi+3]⊕[z1, z0, z1, z0⊕z1]

for i ∈ {0, 4, 8, 12}. The SAES1 algorithm has the same

structure as the SAES, just replace bi, yi e ki by b̂i, ŷi and k̂i,
respectively. For example, for two equations in the first round

b̂5 ⊕ x5 = k5, or b5 ⊕ z0 ⊕ x5 = k5. (22)

Analogously,

b̂8 ⊕ b̂11 ⊕ x9 = k9, or b8 ⊕ z1 ⊕ b11 ⊕ z0 ⊕ z1 ⊕ x9 = k9

or

b8 ⊕ b11 ⊕ z0 ⊕ x9 = k9. (23)

The equation of the second round b5⊕ b8⊕ b11⊕ y12⊕ y15 =
k29 ⊕ k44 ⊕ k47 ⊕ 1 of the algorithm SAES, becomes

b̂5 ⊕ b̂8 ⊕ b̂11 ⊕ ŷ12 ⊕ ŷ15 = k̂29 ⊕ k̂44 ⊕ k̂47 ⊕ 1

or

b5⊕z0⊕b8⊕z1⊕b11⊕z0⊕z1⊕y12⊕z1⊕y15⊕z0⊕z1 =

k29 ⊕ z2 ⊕ k44 ⊕ z3 ⊕ k47 ⊕ z2 ⊕ z3 ⊕ 1

or

b5 ⊕ b8 ⊕ b11 ⊕ y12 ⊕ y15 = k29 ⊕ k44 ⊕ k47 ⊕ z0 ⊕ 1. (24)

Combining (22), (23), and (24), we get

b5 ⊕ z0 ⊕ x5 = k5
b8 ⊕ b11 ⊕ z0 ⊕ x9 = k9

b5 ⊕ b8 ⊕ b11 ⊕ y12 ⊕ y15 = k29 ⊕ k44 ⊕ k47 ⊕ z0 ⊕ 1

x5 ⊕ x9 ⊕ y12 ⊕ y15 = k5 ⊕ k9 ⊕ k29 ⊕ k44 ⊕ k47 ⊕ z0 ⊕ 1
.

(25)

In general, Equation (7) is modified to

∑

k∈S1

xk ⊕
∑

l∈S2

yl =

(

∑

m∈S3

km

)

⊕
(

∑

r∈Γ

zr

)

⊕ t (26)

where Γ is a subset of {0, 1, 2, 3}. From the combinations

of equations of each round, we obtain 48 equations that are

divided into 9 groups, depending on the combination of chaotic

bits in each equation. The number of equations in each group

is shown in Table III. For example, the 8 equations of the

group z0 are

x1 ⊕ x13 ⊕ y0 ⊕ y3 = k1 ⊕ k13 ⊕ k17 ⊕ k32 ⊕
k35 ⊕ z0

x1 ⊕ x13 ⊕ y4 ⊕ y7 = k1 ⊕ k13 ⊕ k21 ⊕ k36 ⊕
k39 ⊕ z0

x5 ⊕ x9 ⊕ y8 ⊕ y11 = k5 ⊕ k9 ⊕ k25 ⊕ k40 ⊕
k43 ⊕ z0

x5 ⊕ x9 ⊕ y12 ⊕ y15 = k5 ⊕ k9 ⊕ k29 ⊕ k44 ⊕
k47 ⊕ z0

x1 ⊕ x13 ⊕ y1 = k1 ⊕ k13 ⊕ k17 ⊕ k33 ⊕ z0

x1 ⊕ x13 ⊕ y5 = k1 ⊕ k13 ⊕ k21 ⊕ k37 ⊕ z0

x5 ⊕ x9 ⊕ y9 = k5 ⊕ k9 ⊕ k25 ⊕ k41 ⊕ z0

x5 ⊕ x9 ⊕ y13 = k5 ⊕ k9 ⊕ k29 ⊕ k45 ⊕ z0.

The 4 equations of the group z1 ⊕ z2 are

x1 ⊕ x3 ⊕ x12 ⊕ x13 ⊕ y0 = k1 ⊕ k3 ⊕ k12 ⊕ k13 ⊕ k16 ⊕
k17 ⊕ k32 ⊕ z1 ⊕ z2

x0 ⊕ x1 ⊕ x13 ⊕ x15 ⊕ y4 = k0 ⊕ k1 ⊕ k13 ⊕ k15 ⊕ k20 ⊕
k21 ⊕ k36 ⊕ z1 ⊕ z2

x4 ⊕ x5 ⊕ x9 ⊕ x11 ⊕ y8 = k4 ⊕ k5 ⊕ k9 ⊕ k11 ⊕ k24 ⊕
k25 ⊕ k40 ⊕ z1 ⊕ z2

x5 ⊕ x7 ⊕ x8 ⊕ x9 ⊕ y12 = k5 ⊕ k7 ⊕ k8 ⊕ k9 ⊕ k28 ⊕
k29 ⊕ k44 ⊕ z1 ⊕ z2

and the equations of the group z0 ⊕ z1 ⊕ z2 are

x3 ⊕ x12 ⊕ y0 ⊕ y1 = k3 ⊕ k12 ⊕ k16 ⊕ k32 ⊕ k33 ⊕
z0 ⊕ z1 ⊕ z2

x0 ⊕ x15 ⊕ y4 ⊕ y5 = k0 ⊕ k15 ⊕ k20 ⊕ k36 ⊕ k37 ⊕
z0 ⊕ z1 ⊕ z2

x4 ⊕ x11 ⊕ y8 ⊕ y9 = k4 ⊕ k11 ⊕ k24 ⊕ k40 ⊕ k41 ⊕
z0 ⊕ z1 ⊕ z2

x7 ⊕ x8 ⊕ y12 ⊕ y13 = k7 ⊕ k8 ⊕ k28 ⊕ k44 ⊕ k45 ⊕
z0 ⊕ z1 ⊕ z2.
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TABLE III
GROUPS OF EQUATIONS DEPENDING ON THE CHAOTIC BITS FOR SAES1

Chaotic Bits Number of equations

z0 8

z1 8

z2 4

z3 4

z0 ⊕ z1 4

z1 ⊕ z2 4

z2 ⊕ z3 8

z0 ⊕ z1 ⊕ z2 4

z0 ⊕ z2 ⊕ z3 4

Considering that the chaotic bits are independent and iden-

tically distributed random variables, the probability that an

equation of the form (26) is satisfied is 0.5, thus the linear

cryptanalysis cannot be applied in this case. However there

are combinations of equations of distinct groups (listed in

Table III) that allow us to obtain 32 linearly independent

equations without chaotic bits. In the sequel, we show the

required combinations and calculate the corresponding prob-

abilities of the resulting equations without considering the

chaotic bits (this calculation is performed in the same way

as in the SAES algorithm), since the objective is to calculate

(after all combinations) the probability of equations that do not

involve chaotic bits. For example, from the SAES algorithm,

each equation in Table III is satisfied with probability 0.5625.

Thus, the addition modulo 2 of equations of the groups z0 and

z1 ⊕ z2, yields 32 equations with probability

q1 , 2q2 − 2q + 1

= 2(0.5625)2 − 2(0.5625) + 1 = 0.5078

and adding these equations with those of the group z0⊕z1⊕z2,

we obtain a sufficient number of linearly independent equa-

tions that do not depend on the chaotic bits, each one with

probability

q2 = (0.5625)(0.5078)+ (1 − 0.5625)(1− 0.5078)

= 0.5009. (27)

Using this probability, we found that the adversary needs n =
2, 667, 777 pairs of plaintext-ciphertext (to find this value of

n, we substitute q = 0.5009 into (17) and proceed in a similar

way as in the paragraph after (19)). Another combinations of

equations can be obtained, but the resulting probabilities are

closer to 0.5, which increase the value of n. In summary, the

chaotic bits select the groups of equations to be combined,

while the probabilities of the equations after the combinations

are calculated in the same way as in the SAES. We apply next

this methodology for a SEAS2.

B. SAES2

The SAES2 algorithm is a simplified version of SAES1

in which the MixColumns unit is eliminated. Due to this

elimination, the equations obtained in the second round of

the SubBytes unit are modified. For example, one equation of

the second round with probability 0.75 is b̂5 ⊕ ŷ12 ⊕ ŷ15 =
k̂29⊕ k̂44⊕ k̂47. The combination of two equations of distinct

TABLE IV
GROUPS OF EQUATIONS DEPENDING ON THE CHAOTIC BITS FOR SAES2

Chaotic Bits Number of equations

No 20

z0 ⊕ z2 12

z1 ⊕ z3 8

z0 ⊕ z1 ⊕ z2 ⊕ z3 8

rounds (each one with probability 0.75) results in 48 equations

divided in 4 groups, as shown in the Table IV, each one with

probability 0.625 (this probability is calculated in (14)). The

combination of equations of the groups z0 ⊕ z2 and z1 ⊕ z3
leads to 96 equations of the group z0 ⊕ z1 ⊕ z2 ⊕ z3 with

probability 0.53125, which are combined with equations of the

group z0⊕z1⊕z2⊕z3, resulting in equations with probability

0.5078 that do not depend on the chaotic bits. Using this

probability, we find that the adversary needs n = 35, 518 pairs

of plaintext-ciphertext to find the key with reliability 95 %.

C. SAES3

The removal of the MixColumns unit of the SAES2 algo-

rithm leads to a loss of diffusion of bits from distinct S-boxes.

A new algorithm, namely SAES3, aims to compensate this

effect. In this algorithm, the ShiftRows and MixColumns units

are replaced by a new unit called ShiftRandom. A random

cyclic shift to the right by j bits is performed on the output

bits of the 4 S-boxes (b0, · · · , b15) depending on the base ten

value of the two chaotic bits z0z1, for j = 0, 1, 2, 3. Each

shift occurs with the same probability 1/4 and for each one

there are 48 possible equations. Table V shows the number of

equations that depend on the chaotic bits for each shift, where

these equations have probability either 0.625 or 0.5625.

A set of 32 linearly independent equations can be obtained

from the combination of equations that are affected by chaotic

bits. For example, a combination of the groups z0 and z1 in

Table V, with shift 01 results in 16 equations that depend

on z1 ⊕ z0 with probability 0.5078. Combining these 16

equations with 8 equations that depend on z0⊕z1 (for the same

shift) resulting in 128 equations, being possible to extract 32

linearly independent equations with probability 0.5009. This

procedure can also be performed for the shifts 10 and 11

with the determination of 32 linearly independent equations

with probability 0.5009 which do not depend on the chaotic

bits. The procedures performed with the shift 00 are similar to

those in the SAES2 algorithm, and the 32 equations present the

probability 0.5078. Thus, the mean value of the probability of

obtaining 32 linearly independent equations that do not depend

on the chaotic bits is

q =
1

4
(0.5078) +

3

4
(0.5009) = 0.5026. (28)

Following the derivation in Section III, the adversary needs

n = 319, 660 pairs of plaintext-ciphertext. Table VI sum-

marizes the results of this section. It presents a comparison

of the probabilities of linearly independent equations and the

number of pairs of plaintext-ciphertext required for the LC to

be successful with a reliability of 95%.
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TABLE V
GROUPS OF EQUATIONS DEPENDING ON THE CHAOTIC BITS FOR SAES3

Shift Chaotic bits Number of equations Probability

00

No 20 0.625
z0 ⊕ z2 12 0.625
z1 ⊕ z3 8 0.625

z0 ⊕ z1 ⊕ z2 ⊕ z3 8 0.625

01

z0 4 0.5625
z1 4 0.5625
z2 4 0.5625

z0 ⊕ z1 8 0.5625
z1 ⊕ z2 4 0.5625
z1 ⊕ z3 4 0.625
z2 ⊕ z3 4 0.5625

z1 ⊕ z2 ⊕ z3 4 0.625
z0 ⊕ z2 ⊕ z3 4 0.625
z0 ⊕ z1 ⊕ z3 8 0.5625

10

z1 8 0.625
z3 8 0.625

z0 ⊕ z2 4 0.5625
z0 ⊕ z3 8 0.5625
z1 ⊕ z2 8 0.5625

z0 ⊕ z1 ⊕ z2 8 0.625
z0 ⊕ z1 ⊕ z2 ⊕ z3 4 0.5625

11

z0 8 0.5625
z2 8 0.5625

z0 ⊕ z1 4 0.5625
z2 ⊕ z3 4 0.5625
z0 ⊕ z3 4 0.5625

z0 ⊕ z1 ⊕ z3 8 0.5625
z0 ⊕ z2 ⊕ z3 4 0.5625
z1 ⊕ z2 ⊕ z3 8 0.625

TABLE VI
LC RESULTS FOR THE PROPOSED ALGORITHMS

Algorithm probability pairs

SAES 0.5625 545

SAES1 0.5009 2,667,777

SEAS2 0.5078 35,518

SAES3 0.5026 319,660

The introduction of chaotic bits leads to a considerable in-

crease in the amount of pairs of plaintext-ciphertext compared

to the required by the SAES algorithm. The SAES1 algorithm

presents the best performance, but it is the most complex

algorithm. The SAES3 algorithm presents robustness against

LC significantly better than SAES2 with similar complexity

(the only difference between these is the shift in the SAES3

that depends on the chaotic sequence).

V. CONCLUSIONS

We study the LC for modified SAES algorithms with the

introduction of chaotic bits in the SubBytes and the generation

of subkeys units. The new algorithms increase the number

of pairs of plaintext-ciphertext needed to find the key bits

with some reliability. As a future work, a similar analysis can

conducted for other cryptanalysis techniques, such as differ-

ential cryptanalysis [13]. Another interesting future direction

is to study the application of the proposed algorithms to some

wireless protocols [14], [15].

APPENDIX

A set of 32 linearly independent equations of the SAES

algorithm each one with probability 0.5625.

x3 ⊕ x12 ⊕ y2 = k3 ⊕ k12 ⊕ k16 ⊕ k34 ⊕ 1

x0 ⊕ x15 ⊕ y6 = k0 ⊕ k15 ⊕ k20 ⊕ k38 ⊕ 1

x4 ⊕ x11 ⊕ y10 = k4 ⊕ k11 ⊕ k24 ⊕ k42 ⊕ 1

x7 ⊕ x8 ⊕ y14 = k7 ⊕ k8 ⊕ k28 ⊕ k46 ⊕ 1

x2 ⊕ x15 ⊕ y3 = k2 ⊕ k15 ⊕ k18 ⊕ k19 ⊕ k35 ⊕ 1

x3 ⊕ x14 ⊕ y7 = k3 ⊕ k14 ⊕ k22 ⊕ k23 ⊕ k39 ⊕ 1

x7 ⊕ x10 ⊕ y11 = k7 ⊕ k10 ⊕ k26 ⊕ k27 ⊕ k43 ⊕ 1

x6 ⊕ x11 ⊕ y15 = k6 ⊕ k11 ⊕ k30 ⊕ k31 ⊕ k47 ⊕ 1

x0 ⊕ x12 ⊕ y2 ⊕ y3 = k0 ⊕ k12 ⊕ k18 ⊕ k34 ⊕ k35

x0 ⊕ x12 ⊕ y6 ⊕ y7 = k0 ⊕ k12 ⊕ k22 ⊕ k38 ⊕ k39

x4 ⊕ x8 ⊕ y10 ⊕ y11 = k4 ⊕ k8 ⊕ k26 ⊕ k42 ⊕ k43

x4 ⊕ x8 ⊕ y14 ⊕ y15 = k4 ⊕ k8 ⊕ k30 ⊕ k46 ⊕ k47

x1 ⊕ x13 ⊕ y0 ⊕ y3 = k1 ⊕ k13 ⊕ k17 ⊕ k32 ⊕
k35 ⊕ 1

x1 ⊕ x13 ⊕ y4 ⊕ y7 = k1 ⊕ k13 ⊕ k21 ⊕ k36 ⊕
k39 ⊕ 1

x5 ⊕ x9 ⊕ y8 ⊕ y11 = k5 ⊕ k9 ⊕ k25 ⊕ k40 ⊕
k43 ⊕ 1

x5 ⊕ x9 ⊕ y12 ⊕ y15 = k5 ⊕ k9 ⊕ k29 ⊕ k44 ⊕
k47 ⊕ 1

x2 ⊕ x3 ⊕ x13 ⊕ y0 = k2 ⊕ k3 ⊕ k13 ⊕ k19 ⊕ k32

x1 ⊕ x14 ⊕ x15 ⊕ y4 = k1 ⊕ k14 ⊕ k15 ⊕ k23 ⊕ k36

x5 ⊕ x10 ⊕ x11 ⊕ y8 = k5 ⊕ k10 ⊕ k11 ⊕ k27 ⊕ k40

x6 ⊕ x7 ⊕ x9 ⊕ y12 = k6 ⊕ k7 ⊕ k9 ⊕ k31 ⊕ k44

x1 ⊕ x13 ⊕ y1 = k1 ⊕ k13 ⊕ k17 ⊕ k33

x1 ⊕ x13 ⊕ y5 = k1 ⊕ k13 ⊕ k21 ⊕ k37

x5 ⊕ x9 ⊕ y9 = k5 ⊕ k9 ⊕ k25 ⊕ k41

x5 ⊕ x9 ⊕ y13 = k5 ⊕ k9 ⊕ k29 ⊕ k45

x0 ⊕ x1 ⊕ x14 ⊕ y0 ⊕ y1 = k0 ⊕ k1 ⊕ k14 ⊕ k17 ⊕ k18 ⊕
k32 ⊕ k33 ⊕ 1

x2 ⊕ x12 ⊕ x13 ⊕ y4 ⊕ y5 = k2 ⊕ k12 ⊕ k13 ⊕ k21 ⊕ k22 ⊕
k36 ⊕ k35 ⊕ 1

x6 ⊕ x8 ⊕ x9 ⊕ y8 ⊕ y9 = k6 ⊕ k8 ⊕ k9 ⊕ k25 ⊕ k26 ⊕
k40 ⊕ k41 ⊕ 1

x4 ⊕ x5 ⊕ x10 ⊕ y12 ⊕ y13 = k4 ⊕ k5 ⊕ k10 ⊕ k29 ⊕ k30 ⊕
k44 ⊕ k45 ⊕ 1

x3 ⊕ x12 ⊕ y0 ⊕ y1 = k3 ⊕ k12 ⊕ k16 ⊕ k32 ⊕ k33

x0 ⊕ x15 ⊕ y4 ⊕ y5 = k0 ⊕ k15 ⊕ k20 ⊕ k36 ⊕ k37

x4 ⊕ x11 ⊕ y8 ⊕ y9 = k4 ⊕ k11 ⊕ k24 ⊕ k40 ⊕ k41

x7 ⊕ x8 ⊕ y12 ⊕ y13 = k7 ⊕ k8 ⊕ k28 ⊕ k44 ⊕ k45.
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