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1. INTRODUCTION

The purpose of this paper is to review the most imnortant published studies
in the area of objective measures, useful for the quality prediction of speech
coders. Admittedly, “quality” is and extremely elusive concept that involves
scmething more than intelligibility and takes into account the phenomenon
of individual differences in taste.

Irdeed, a primary merit of subjective measures is that they provide a score
which incorporates all aspects of the human speech perception process. In
fact, listeners do not use only the acoustic cues but actively exploit their
knowledge of the language, the syntactic and semantic contexts and even
talker related information to suicceed in the perception task. However, either
many subjects or trained crews must be used in the experiments, in order to
remove the large component of variance due to the relative tolerance of each
subject for distortions and noise. Unfortunately, subjective scores are not
related to physical signal characteristics and give little insight into how a
speech codec can be improved. Another drawback is that subjective measu-
res are susceptible to errors of both subjects and administrators. Further, itis
difficult to compare subjetive results obtained in different times and places.

In the recent years, new digital speech processing techniques have been
developed and incorporated in voiceband codecs. Because of the large
number of factors determining the output speech quality, it is practically
impossible, as previously noted, to optimize the coding system by resorting
to subjective judgments, which are generally costly and time consuming.

Therefore, various objective measures have been tested and compared in
order to establish their degree of correlation with subjective scores. Objective
measures are inexpensive to administer and quite reliable. In addition, it is
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easy improving the coder performance by directly minimizing the distortion as
defined by the objective measure itself.

So far, a clear-cut answer to the problem of the quality evaluation of very
different coders or speech distortions through a single universal objective
measure is not yet available. In fact, an optimal quality estimatcr should
provide not only a good prediction of the performance of a given coder, but
also a correct ranking among various coders. However, the results presented
in the literature, and summed up in the following, show that a few objective
measures look promising for certain classes of speech digitizers.

2. OBJECTIVE MEASURES

This section deals with the description of a number of computable objective
measures that are usually employed as tools in the evaluation task. The first
three measures are defined in the time domain and represent a simple way
to characterize, in a single number, the performance of a codec under test.
The other measures are defined in the frequency domain and permit a more
sophisticated approach to the issue of gauging speech quality. Moreover, they
are insensitive to short delays between input and output signals or to phase
distortion.

2.1. Long-term SNR

Awidely used measure of performance, easy to compute and well understood,
is the convetional signal-to-noise ratio (SNR) defined as

SNR = 10 Log {En xz(n)/zn[y(n) - x(n)]2} (1)

where x(n) and y(n are the input and output signals, respectively. Since the
summations are taken over the entire speech utterance, Eq. (1) is called
long-term SNR.

Several experiments have shown that this measure is poorly correlated with
subjective quality, nevertheless is sometimes used during the design and
“tuning” of waveform coders.
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2.2. Segmental SNR (SNRseg)

An improvement to the previous measure, suggested by P. Noll [1], averages
SNR values over short (15-30ms) segments and therefore assigns equal
weight to loud and soft parts of the utterance. This measure can capture
individual preferences for a given coder, but still fails to predict a correct ranking
between different coders. The main shortcoming of this measure arises when
the variation of individual SNR values around the average is large.

2.3. Gain-compensated SNRseg

In this measure, variations of the output speech level with respect to the input
signal are compensated before taking the SNR, segment by segment. This
procedure is supported by the fact that small amplitude variations introduced
by the coder can impair the SNR measurements, while having a negligible
impact on the subjective quality.

2.4. Frequency weighted segmental SNR

Many experiments have shown that the perceptual quality of a coder depends,
among other things, on the frequency distribution of this quantizing noise
relative to the speech spectrum. In fact, it is well known that the auditory
mechanism relies upon a short-term spectral analysis of the incoming signal,
exploiting this spectral information as a frequency warped “place spectrum”
translated on the basilar membrane of the ear [7]. It turns out that a speech
signal is judged to be of “good quality” when each location on the basilar
membrane (or equivalently each “critical band”) is excited by a signal with a
sufficiently high SNR.

According to the classical articulation model, the speech band, ranging from 200
up to 6100 Hz, is divided into 20 nonuniform subbands experimentally derived.
Each subband is assumed to conitribute, independently of the others and under
optimum conditions, an equal 5% to the so-called articulation index (Al)

Al = Ej A() = E; 0.05(SNR(j)/TH), j=1,...,20 ©
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where the peak signal to rms noise ratio in band j, SNR()), is clipped to a
maximum value of TH dB (e. g. TH = 30 dB), so that Al cannot be greater than
1.

Eq. (2) can be transformated to an integral in frequency [7], giving

f2

Al = [F(f) SNR(f) df, f; =200, f, = 6100 3
T

where F(f) (the Jacobian of the transformation) is a frequency wheighting that
falls down with an approximate slope of 20 dB from 200 to 6100 Hz. Therefore,
the Al measure can be considered as a frequency weighted SNR measure.

An important feature of this measure is that the wiath of each band increases
with the center frequency, in order to carry the same amount cf contribution.
This is in tune with the fact that the shori-term speech spectrum tends to be
flatter (whiter) in high frequency subbands, which leads to a decreasing
amount of information (entropy). Moreover, the weighting behavior is in
agreement with the optimal SNR distribution, as a function of frequency, for
subband coders.

Cor:siderirg the time varying nature of the short-time speech spectrum, a
static weighting function does not perform adequately well, while a dynamic
one has the potential to yield a better measure of quality. A general form
assumed by this refined measure is

f2

SNRF = ¥ [ GIS(A; () SNR() df (4)
i t,

where i refers to the speech segment index, fis frequency, S(f) is the short-time
spectrum of the input speech, G[S(f)] is a dynamic frequncy weighting which
is related to the speech production mechanism, F(f) is a static frequency
weighting derived from psycho-acoustic properties of hearing, and SNR(f) is
the short-ime SNR at frequency f (i.e. the coder performance).
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From Eq. (4), we can define a number of objective measures, which differ in
the dynamic weighting function G and in the SNR computation [8].

The first form is based on the assumption that G[S(f)] = 1, and SNR(f) is
computed in dB (log scale). So we have

SNRF,=<2j[1OLog(u,dlu,i)]fB>, j=1,.,B (5)

where Ly is the power of the reference signal x(n) in the articulation band |,
for a short segment (e.g. 30ms), and py is the power of the corresponding
noise signal y(n) — x(n). The notation < > denotes the average over all the
segments in the speech utterance.

The second torm is characterizea by a weighting that approximates the
subjective loudness

GIS(H)] = L(F) = [ 1Sy(f) 109 ¢ (6)
7}

where Sy(f) is the spectrum of the coded speech, and f;is the center frequency
of band j. The resulting measure is

SMRF = < {E,. L(5) [10Log(itg)/1ey) ] }/Ej L#)>, j=1..B @
The third form exploits a normalized log spectral weighting
G[S(H)] = P(f)) = [40 + 10Log (i / uy) 1740 ®)

where py; is the output signal power in band j, and py is the total power in the
output signal (for the i-th segment). Thus P(f}) is 1 if the energy ina band j is
equal to the total energy, and is setto O if it is 40 dB (or mcre) below the total
output energy. Therefore, the log spectral weighted measure is

SNRFj = < 3, P() [10Log(ig/un) /B>, [ =1,...B ©

Revista da Sociedade Brasileira de Telecomunicagoes
Vohime 6, N? 1, dezembro de 1991 65




2.5 Cepstral distance measures

While the preceding SNRF'’s are based on the entire spectrum, computed
through FFT, other distance measures are based on transformations that
retain only the smoothed spectral behavior of the speech signal.

We will consider first the unweighted Euclidean distance based upon cepstral
coefficients, which will be referred to as the cepstral distance measure CDM.

Consider two all-pole spectral models G/A(z) and G/A(z). The error or
difference between these models on a log magnitude versus frequency scale
is defined as [32]

V() = In [G2/1 A(eF) I |- In[G2/1 A(e?) 12] (10)

where 9 a normalized frequency or angle in the z plane, with & representing
the half-sampling frequency. Alogical choice for a distance measure between
spectral models is the set of Lp norms defined as

@ -1 V@) P & (1)

The rms log spectral measure is defined for p = 2. These Lp measures can
be related to decibel variations in the log spectral domain through the
multiplicative factor 10/In(10) = 4.34...

In order to reduce the computational load required to estimate V(9) as a
summation, we can resort to other efficient methods based on linear prediction
analysis. To this effect, if A(z) is an Mth order polynomial in z' with all of its
roots within the unit circle, and A(») = 1, then a Taylor series expansion gives

In[A(z)]=—Ekckz“‘, k=1,..0% (12)

where {cy} are the cepstral coefficients. It follows [32] that the Fourier series
expansion for the model log spectrum is
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In [GZ/I A(e?) 12 ] = Ek cke | k=—w,.. 0 (13)

where ¢o = In [GZ ] and c_k = Ck.

An application of the Parseval’s theorem to the L distance measure gives

(d2)? = ¥ (e - € = (Co - C'o)® +2 Y (G~ Cy? (14)
k=1

K=~

All the spectral shape information lies ir the coefficients ¢4, ¢, ..., cm, since
they uniquely describe the filter ceefficients of A(z). Thus, we can take a
truncated series to define a cepstral measure u(L), for L greater than or equal
to M, as

L

[U(L))* = (co - o +2 3 (o - €2 (15)
k=1

The cepstral distance measure in dB is defined as:

L
0.5

CDM = (10/In10) [2 E (ck - c')? ] (16)
k

=1

In conclusion, Eq. (16) can be readily computed by means of linear prediction
analysis, to evaluate the models A(z) and A'(z), and weli kriown transforma-
tions between model coefficients a; and cepstral coefficients cy.

It is also possible to define the quefrency weighted cepstral distance or Root
Power Sums [33] as

L

Daw = ¥ K2 (¢ - ¢')? (a7
K1
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The most important feature of the wieghting is that it de-weights the lower
order cepstral coefficients, rather than weighting the higher order ones, in a
data independent manner.

Finally, it is worth mentioning the use of transitional speciral variations into a
specific cepstral measure. This dynamic feature of the spectral space has
mainly been used in speech recognizers [34]. An appiication to speech
compression algorithms is presented in [35].

The spectral variation in time is represented by the time derivative of the
log-spectrum or, recalling Eq. (13), by the time derivative of the sampled time
series c(t), that usually does not have an analytic form. Since the 1st order
finite difference is in general noisy, the derivative can be approximated by an
orthogonal polynomial fit on each cepstral trajectory over 2 fixed number of
frames (window).

The 1storder coefficient, or spectral slope in time, ui the orthogonal poiynomial
has the form

Ack(t)=[vz nhy, ck(t + n)]/[E han?2], n=-N,..,N (18)

where hp is the window of lenght 2N + 1. A weighted Euclidean distance
between two given transitional spectra is defined as

Dw = Ek Wy (ACk — AClk)2 (1 9)

Dynamic spectral features play an important role in speech perception, as
demonstrated in a perceptual experiment by S. Furui [36].

2.6 Other parametric and spectral measures

In addition to the previous objective measures, other parametric and spectral
measures have been suggested for the evaluation of speech coders [25]. Of
particular interest are those based on linear prediction analysis, such as: log
area ratio (LAR) measure, reflection coefficient (RFC) measurs, feedback
(or predictor) coefficient (FBC) measure, log likelihood ratio (LLF) measure,
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linear spectral distance (LSD) and frequency-variant spectral distance
(FVSD).

The measures LAR, RFC and FBC are computed by parforming the linear
nrediction analysis over input and output speech frames, and then evaluating
the L1 norm between the corresponding input and cutput parameters.

For LLR, the likelihood ratio between input and output LPC parameters is
raised to the power 0.25.

For LSD, the LPC all-pole model spectra for input and output speech are
normalized to have the same geometric mean, then the Lz norm is taken.

The measure FVSD is also computed using the input and output LPC model
spectra. Each spectrum is divided into tipically six bands, which are separately
normalized so that the average spectral amplitude over each band is unity. A
weighted Ly norm is taken between the normalized subband spectra, the
weighting function being the input LPC spectrum. Finally a linear combination
of the six norms is formed. The constants required for the linear combinatiori
can be obtained via linear regression analysis with subjective scores.

The short-time banded SNR (STB-SNR) is a generalization of the segmental
SNR. The input speech and the noise (difference between the input and the
output signals) are filtered into six bands and for each band the SNRseg is
computed. Alinear combination of the six SNRseg values is then formed. The
final objective score is obtained, as usual, by time averaging over frames.

Another interesting measure, proposed in [26], incorporates an explicit para-
metric model of speech perception, and is based on the perturbations
exhibited by the spectral peaks of the output signal. Speech formants are
computed on the original and distorted signals via the Line Spectrum Pair
transformation of the LPC polynomial. Nine different features (e. g. energy,
differences in location and in bandwidth, movement, etc.) are determined by
comparing the spectral peaks, classified as lost, false and distorted. The
objective measure is obtained as a combination of 13 individual features, each
computed on at most four spectral peaks.
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3. EXPERIMENTAL RESULTS

In this secticn, we report briefly the most important results obtained by various
researchers. In particular, each subsection deals with the work performed in
a specific laboratory.

3.1 BBN (U.S.A) [2.5]

Selected coders:

— Adaptive Predictive Coding with Noise Shaping (APS-NS), bit rate of 16
kbit/s,

— Continuously Variable Slope Delta modulation (CVSD) at 16 kbit/s,
— APC with Segmented Quantizer (APC-SQ) at 9.6 kbit/s,

— Baze Band Coder (BBC) at 9.6 kbit/s,

— LPC vocoder with 10th order prediction filter (LPC-10) at 2.4 kbit/s.
Subjective measure:

— Diagnostic Acceptability Measure (DAM).

Objective measures:

—log area ratio,

— reflection coefficients,

— predictor coefficients,

— log likelihood,

— linear spectral distance,

— frequency-variant spectral distance,

— short-time banded SNR.

Results: FSVD has the best correlation (0.997) for the waveform coders,
followed by STB-Snr (0.994).
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3.2 Bell Laboratories (U.S.A.) [6-11]

Selected coders:

— Adaptative Differential PCM (ADPCM) with Jayant adaptive quantizer
and fixed predictor, bit rates of 9.6, 16, and 24 kbit/s,

— ADPCM with forward adaptive quantizer and forward adaptive &th order
predictor, bit rates of 9.6, 18, and 26 kbit/s,

— Sub Band Coder (SBC) at bit rates of 9.6, 16, and 24 kbit/s,

— Adaptive Transform Coder (ATC) at bit rates of 9.6, 16, and 24 «bit/s.
Subjective measure:

— Absolute category rating with Mean Opinion Score (MOS).

Objective measures:

—SNR, SNRseg,

— frequency weighted SNRseg,

— log likelihood,

— articulatory bandwidth.

Results: A combined measure, based on a modified log likelihood and the
percent articulatory bandwidht, predicts well the individual preferences in a
given coder as well as the inter-relationships between coders.

3.3 Bell Northern Research (Canada) [12-14]

Selected coders:

—p-law PCM (u = 255), from 4 up to 8 bit/sample,

— Adaptive Deita Modulation (ADM) at bit rates of 16 and 32 kbit/s,

— ADPCM, with either adaptive or fixed 3rd order predictor, at 32 kbit/s,
— APC at 16 kbit/s,
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— Residual Excited Linear Predictive coder (RELP) at 4.8 kbit/s,
— LPC vocoder at 2.4 kbit/s.

Subjective measures:

— preference test (ABAB, BABA sequencss),

- MOS.

Objective measures:

—SNR, granular SN, overload SNR, subjective SNR,

— coherence function.

Results: The subjective SNR, defined as the SNR of that reference signal
whict;, on the average, is equally preferred tc the test signal by a group of
listeners, can be used only for waveform coders of good quality. The correla-
tion obtained using the coherence function over PCM, ADPCM and APC is
0.96.

3.4 CSELT (italy) [15-17]

Selected coders:

— ADPCM, with fixed predictor, at 24 and 32 kbit/s,
— APC-NS based on FFT.

Subjective measure:

—~ MOS on a 9 peint scale.

Particular condition:

— ADPCM with channel bit error rate (BER) equal to 1/256 and 1/32.
Objective measures:

—SNR, SNRseg,

— frequency weighted SNRseg,
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— log likelihood,
— several linear combinations of these measures.
Results: The best prediction scores are achieved by a gain-compensation

SNRseg, and also by a spectral signal-to-distortion ratio. A linear combination
of these measures has been used to predict ratings of APC-NS.

An attempt to estimate the quality of ADPCM coders through a measuring
system, based upon artificial signals and identification procedures, is descri-
bed in [17].

3.5 Georgia Institute of Technology (U.S.A.) [16-26]
Selected coders:

— Adaptative PCM (APCM), 6 conditions,

— ADPCM, 12 conditions,

— APC, 6 conditions,

— ADM, 6 conditions,

— CVSD, 6 conditions,

— SBC, 6 conditions,

— ATC, 6 conditions,

— LPC vocoder, 6 conditior:s,

— Voice Excited Vocoder (VEV), 12 conditions.
Particular conditions: more than 200 conditions with controlled distortions,

such as low-pass, high-pass and band-pass filtering, center clipping, clipping,
white noise, echo, etc., have been added to the database.

Subjective measure:

— DAM.
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Objective measures:

—SNR, SNRseg,

— spectral distance,

— energy ratio,

— PARCOR coefficients,

— log area ratio,

— frequency-variant banded SNR,
— spectral peak distortion.

Results: A very good quality measure for waveforms coders and noise
distortions is based on the frequency-variant banded SNR, which has a
correlation factor of 0.93. The best simple measure is the spectral peak
distortion, that gives the highest correlation factor (0.78) in comparison to any
other simple measure previously tested on the Georgia Tech speech databa-

ses.

3.6 NTT (Japan) [27-30]
Selected coders:

— u-law PCM (u.= 255), from 4 up to 8 bit/sample, sampling frequency
Fs = 8 kHz,

— ADPCM with a 2-pole 6-zero adaptive predictor and a backward adaptive
dynamic locked quantizer (DLQ), from 2 up to 4 bit/sample, Fs = 8 kHz,

— ADPCM with a fixed 1st order predictor (coefficient = 0.98) and a back-
ward adaptive quantizer (Jayant’s algorithm), from 2 up to 4 bit/sample,
Fs = 8kHz,

— ATC with dynamic bit allocation among DCT coefficients, bit rates of 9.6,
12, 16 and 24 kbit/s,

— APC with Adaptive Bit allocation in time and frequency domains (APC-
AB), split-band scheme with long term predictor (Honda-Itakura design), bit
rates of 9.6, 12, 16 and 24 kbit/s.
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Particular conditions:

— PCM with channel BER equal to 0.001,

— PCM overload.

Subjective measure:

— absolute category rating, giving MOS on a 5-point scale.
Objective measures:

~ SNR, SNRseyg,

— spectral distortion based on a 256-point FFT,

— cepstral distance,

— logarithmmic spectral envelope distance, weighted by a cosh function,
~ likelihood ratio (LHR),

— peak weighted LHR.

Results: Frequency domain measures have better correspondence o MOS
than time domain ones; the cepstral distance has the best correlation (0.929),

excluding BER and overload conditions.

3.7 Tokyo Institute of Technology (Japan) [31]
Selected coder:

— cepstral vocoder at a bit rate or 2.8 kbit/s, Fs = 10 kHz.
Subjective measure:

— preference score (pair comparison test).

Objective measure:

— Spectral distortion.
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Results: There is a good correlation between preference scores and the
overall spectral distortion caused by the frame period, cepstrum order and
quantization noise.

4. CONCLUDING REMARKS

The large number of objective measures available so far in the literature
represents an important result of the notable effort provided by many re-
searchers in this field. However, the major problems continues to be the
capebility of a given objective measure to perform adequately well across a
large sample of all distortions and all talkers. At the moment, based on
experimental results and educated guess, we can say thar this issue is twofold,
since it involves both the statistical reliability of the objective measure and the
correlation with subjective ratings. As far as the former point is concerned, it
seems that the reliability is a very strong feature of many objective measures,
while the latter issue is extremely subtie and deserves a careful examination.

Basically, the potential of an objective measure can be improved by tailoring
its parameters on specific classes of distortions but this leads, unfortunately,
to specialized quality estimators, losing generality and universality. On the
other hand, a more general measure, devised tc handle a wide range of
speech distortions, will exibit a comparatively iower performance, while
requiring a huge subjective database to set the controlling parameters pro-
perly. In this light, it is clear that a substantial performance improvement could
be provided by new measures designed according to an effective and
advanced model of the speech perception process, rather than a signal fidelity
criterion.

Afew examples of measures conceived towards this goal have been reviewed
in the preceding sections, but further enhancements are still needed to
improve the quality prediction capability across a large set of different condi-
tions and relevant distortions. This is a most basic step to be considered in
the future research directions.

In conclusion, therefore, objective measures must be selected and used
carefully, exploiting their usefulness for speech codec optimization and testing
but, also, bearing in mind their current limitations.
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