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1. INTRODUCTlON 

lhe purpose of thís paper is to review 'lhe most important publisned studies 
in the area of objective measures, useful for the quality predictíon of speech 
coders. Admittedly, "quality" is and extremely elusive concept that involves 
something more than intelligibility and takes into account the phenomenon 
of individual differences in taste. 

Irldeed, a primary merit of subjective measures is that they provide a score 
which incorporates ali aspects of the human speech perception processo ln 
fact, listEners do not use only the acoustic cues but actively exploit their 
knowledge of the language, the syntactic and semantic contexts and even 
talker related information to succeed in the perception task. However, either 
many subjects or trained crews must be used in the experiments, in arder to 
remove the large component of variance due to the relative tolerance of each 
subject for distortions and noise. Unfortunately, subjective seores are not 
related to physicaJ signaJ characteristics and give little insight into how a 
speech codec can be improved. Another drawbac!< is that subjective measu­
res are susceptible to errors of both subjects and administrators. Further, it is 
difficult to compare subjetive results obtained in different times and places. 

ln the recent years, new digital speech processing techniques have been 
developed and incorporated in voíceband codecs. Because of the large 
number of factors determining the output speech quality, it is practically 
impossible, as previously noted, to optimize the coding system by resorting 
to subjective judgments, which are generaJly costly and time consuming. 

Therefore, various objective measures have been tested and compared in 
order to establish their degree of correlation with subjec'ove scores. Objective 
measures are inexpensive to administer anel quite reliable. ln addition, it is 
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easy improving the coder performance by directly minimizing the distortion as 
defined by the objective measure itself. 

So far, a c1ear-cut answer to the problem of the quaJity evaJuation of very 
different coders or speech distortions through a single universaJ objective 
measure is not yet available. ln fact, an optimaJ quaJity estimatc.r should 
provide not only a goOO prediction of the performance of a given coder, but 
aJso a correct ranking among various coders. However, the results presented 
in the literature, and summed up in the following, show that a few objective 
measures look promising for certain classes of speech digitizers. 

2. OBJECTIVE MEASURES 

This section deals with the description of a number of computable objective 
measures that are usuaJly employed as tools in the evaJuation task. The first 
three measures are defined in the time domain and represent a simple way 
to characterize, in a single number, the performance of a codec under test. 
The other measures are defined in the frequency domain and permit a more 
sophisticated approach to the issue of gauging speech quality. Moreover, they 
are insensitive to short delays between input and output signaJs or to phase 
distortion. 

2.1. Long-term SNR 

Awidely used measure ofperformance, easyto compute and well understood, 
is the convetionaJ signaJ-to-noise ratio (SNR) defined as 

(1 ) 

where x(n) and y(n} are the input and output signals, respectively. Since the 
summat;ons are taken over the entire speech utterance, Eq. (1) is called 
long-term SNR. 

SeveraJ experiments have shown that this measure is poorly correlated with 
subjective quality, nevertheless is sometimes used during the design and 
''tuning'' of waveform coders. 
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2.2. Segmentai SNR (SNRseg) 

An improvement to the previous measure, suggested by P. NolI [1], averages 
SNR values over short (15-30ms) segments and therefore assigns equal 
weight to loud and soft parts of the utterance. This measure can capture 
individual preferences for a given ceder, but still faHs to predict acorrect ranking 
between different coders. The main shortcoming of this measure arises when 
the variation of individual SNR values around the average is large. 

2.3. Gain-compensated SNRseg 

ln this measure, variations of the output speech levei with respect to the input 
signal are compensated before taking the SNR, segment by segment. This 
procedure is supported by the fact that small amplitudevariations introduced 
by the coder can impair the SNR measurements, while having a negligible 
impact on the subjective quality. 

2.4. Frequency weighted segmentai SNR 

Many experiments have shown that the perceptual quality of acoder depends, 
among other things, on the frequency distribution of this quantizing noise 
relative to the speech spectrum. ln fact, it is well known that the auditory 
mechanism relies upon a short-term spectral analysis oi the incoming signal, 
exploiting this spectral information as a frequency warped "place spectrum" 
translated on the basilar membrane of the ear [7]. It turns out that a speech 
signal is judged to be of "goOO quality" when each location on the basilar 
membrane (or equivalent/y each "criticai band") is excited by a signal with a 
sufficient/y high SNR. 

According to the classical articulation moelel, the speech band, ranging trem 200 
up to 6100Hz, is divided into 20 nonuniform subbands experimentally derived. 
Each subband is assumed to contribute, independently of t.he others and under 
optimum conditions, an equal 5% to the so-called articulation index (AI) 

AI = 2. AG) = 2. O.OS(SNRU)/TH), j ~ 1, ... ,20 (2) 
J J 
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whert7 tile peak signal to rm3 noise ratio in band j, SNR(j), is c1ipped to a 
maximum vaJue ofTH dB (e. g. TH = 30 dB), sothatAI cannotbe greaterthan 
1. 

Eq. (2) can be transformated to an integral in frequency [7], giving 

f2 

AI "" f F(f) SNR(f) df, f1 = 200, f2 = 6100 (3) 
f1 

where F(f) (the Jacobian of the transformation) is a frequency wheighting that 
falis down with an approximate slope of 20 dB from 200 to 6100Hz. Therefore, 
the AI measure can be considered as a frequency weighted SNR measure. 

An important feature of this measure is that the wicrth of each band increases 
with the center frequency, in order to carry the same amount cf contribution. 
.rhis is in tune with the fact that the short-term speech spectrum tends to be 
fiatter (whiter) in high frequency subbands, which leads to a decreasing 
amount of information (entropy). Moreover, the weighting behavior is in 
agreement wíth the optimaJ SNR distribution, as a function of frequency, for 
subband coders. 

Cor;sidering the time varying nature of the short-time speech spectrum, a 
static weighting function does not perform adequately well, while a dynamic 
one has tf'1e potential to yield a better measure of quality. A general form 
assurned by this refined measure is 

f2 

SNRF = 2. f G[S(f)]j F(f) SNR(f)j df (4) 
I f, 

where; refers to the speech segment index, f is frequency, S(f) is the short-time 
spectrum oft1e input speech, G[S(f)] is a dynamic frequncy weighting which 
is related to the spe~ch production mechanism, F(f) is a static frequency 
weighting derived from psycho-acoustic properties of hearing, and SNR(f) is 
the short-time SNR at frequency f (Le. the coeler pértormance). 
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From Eq. (4), we can define a number of objective measures, which differ in 
the dynamic weighting function G and in the SNR computation [8]. 

The first form is based on the assumption that G[S(~] = 1, and SNR(~ is 
computed in dB (109 scale). So we have 

SNRF 1 = < 2:. [10 L09(!!xj I !!r1) ]fB >, j"" 1, .... B (5) 
J 

where !!xj is the power of the reference signal x(n) in the articulation band j, 
for a short segment (e.g. 30ms), and M is the power of the corresponding 
noise signal y(n) - x(n). The notation < > denotes the average over ali the 
segments in the speech utterance. 

The second 1'0rm is characterizeCl by a weighting that approximates the 
subjective loudness 

G[S(fj )] = L(fj) = fi Sy(f) 1-0.5 df (6) 
J 

where Sy(~ is the spectrum of the coded speech, and fj is the center frequency 
of band j. The resulting measure is 

The third form exploits a normalized log spectral weighting 

(8) 

where!-lYi is the output signal power in band j, and !-ly is the total power in the 
output signal (for the i-th segment). Thus P(~) is 1 if the energy in a band j is 
equal to the total energy. and is set to Oif it is 40 dB (or more) be10w the total 
output energy. Therefore, the log spectral weighted measure is 

SNRF3 = <~. P(ij) [10Lüg(!!xj/l-tnj) ]/B >, j = 1, ... ,8 (9) 
I 
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2.5 Cepstral distance measures 

While the preceding SNRF's are based on the entire spectrum, computed 
through FFT, other distance measures are based on transformations that 
retain only the smoothed spectraJ behavior of the speech signaJ. 

We will consider first the unweighted Euclidean distance based upon cepstraJ 
coefficients, which will be referred to as the cepstraJ distance measure CDM. 

Consider two all-pole spectraJ models G/A(z) and G'/P\(z). The error or 
difference between these models on a log magnitude versus frequency scaJe 
is defined as [32] 

(10) 

where aa normalízed frequency or angle in the z plane, with Jt representing 
the half-sampling frequency. A 10gicaJ choice for a distance measure between 
spectral models is the set of Lp norms defined as 

Jt 

(dp)P =fl V(a) IP da (11 )
2Jt 

-Jt 

The rms log spectraJ measure is defined for p =2. These Lp measures can 
be related to decibel variations in the log spectral domain through the 
multiplicative factor 10/ln(1 O) =4.34... 

ln order to reduce the computationaJ load required to estimate V(a) as a 
summation, we can resort to other efficient methods based on linear prediction 
anaJysis. To this effect, if A(z) is an Mth order polynomiaJ in Z·l wíth aJl of its 
roots within the unit circle, and A(00) = 1, then a Taylor series expansion gives 

ln [A(z) J = - 2 Ck Z-k, k = 1,.. 0,00 (12) 
k 

where {qJ are the cepstral coefficients. It follows [32] that the Fourier series 
expansion for the model 109 spectrum is 
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(13) 

where Cc = ln [G2
] and C-k = Ck. 

An application of the Parseval's theorem to the G distance measure gives 

00 00 

(d2)2 = 2: (Ck - C\)2 = (Co - C'O)2 + 22: (Ck - C'k)2 (14) 
k __ oo k-1 

Ali the spectral shape information lies ir. the coefficients C1, C2, ... , CM. sinee 
they uniquely deseribe the filter coefficients of A(z). Thus, we can take a 
truncated series to define a cepstra/ measure u(L), for L greater than ar equal 
to M, as 

L 

[U(L)]2 = (co - C'O)2 + 2 2: (Ck - C'k)2 (15) 
k - 1 

The cepstral distance measure in dB is defined a~; 

L 
~ 2 0.5

COM = (10/lniO) [2 LJ (Ck - C'k) ] (16) 

k - 1 

ln conclusion, Eq. (16) CW1 be readily computed by means oflinear prediction 
analysis, to evaluate the models A(z) and A'(z) , and we!l known transforma.. 
tions between model coefficients 8j and cepstral coefficiel"'ts Ck, 

It is a1so possible to define the quefrency weighted cepstral distance or Root 
Power Sums [33] as 

L 

Oqw = 2: k2 (Ck - C'k)2 (17) 
k -1 
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The most important feature of the wieghting is that it de-weights the lower 
order cepstral coefficients, rather than weighting the higher order ones, in a 
data independent mal mer. 

Finally, it is worth mentioning the use of transitional speciral variations into a 
specific cepstral measure. This dynamic feature of the spectral space has 
mainly been used in speech recognizers [34]. An appiication to speech 
compression algorithms is presented in [35]. 

The spectral variation in time is represented by the time derivative of the 
log-spectrum or, recalling Eq. (13), by the time derivative of the sampled time 
series ~(t), that usually does not have an analytic formo Since the 1st order 
finite difference is in general noisy, the derivativa can be approximated by an 
orthogonal polynomial fit on each cepstral trajectory over ê. fixed number of 
frames (window). 

The 1st order coefficient, or spectral slope in time, of the orth09onal polynomial 
has theform 

where hn is the window of lenght 2N + 1. A weighted Euclidean distance 
between two given transitional spectra is defined as 

(19) 

Dynamíc spectraJ features play an important role in speech perception, as 
demonstrated in a perceptual experiment by S. Furui [36]. 

2.6 Other parametric and spectral measures 

ln addition to the previous objective measures, other parametric and spectral 
measures have been suggested for the evaluation of speech coders [25]. Of 
particular interest are those based on linear prediction analysis, such as: log 
area ratio (LAR) measure, reflection coefficient (RFC) measure, feedback 
(or predictor) coefficient (FBC) measure, 109 likelihood ratio (LLR) measure, 

--_._-------------------­
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linear spectral distance (LSO) and trequency-variant spectral distance 
(FVSO). 

The measures LAR, RFC and FBC are computed by performing the linear 
prediction analysis over input rmd output speech trames, and then evaluating 
the L1 norm between the corresponding input and (.;utput param6ters. 

For LLR, the likelíhood ratio between input and output LPC parameters is 
raised to the power 0.25. 

For LSO, the LPC all-pole medel spectra for ínput and output speech are 
normalized to have the sarne geometric mean, then the 12 norm is taken. 

The measure FVSO is a1so computed using the input and output LPC model 
spectra. Each spectrum is divided into tipically six bands, which are separately 
normalized so that the average spectral amplitude over each band is unity. A 
weighted ~ norm is taken between the normalized subband spectra, the 
weighting function being the input LPC spectrum. Finally a linear combination 
of the six norms is formed. The constants required for the linear combination 
can be obtained via linear regression analysis with subjective scores. 

The short-time banded SNR (STB-SNR) is a generalization of the segmentai 
SNR. The input speech and the noise (difference between the input and the 
output signals) are filtered into six bands and for each band the SNRseg is 
computed. A linear combination of the six SNRseg values is then formed. The 
final objective score is obtained, as usual, by time averaging over trames. 

Another interesting measure, proposed in [26], incorporates an explicit para­
metric medel of speech perception, and is based on the perturbations 
exhibited by the spectral peaks of the output signal. Speech formants are 
computed on the original and distorted signals via the Une Spectrum Pair 
transformation of the LPC polynomial. Nine different features (e. g. energy, 
differences in location and in bandwidth, movement, etc.) are determined by 
comparing the spectral peaks, classified as lost, false and distorted. The 
objective measure is obtained as a combination of 13 individual features, each 
computed on at most four spectral peaks. 
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3. EXPERIMENTAL RESULTS 

ln this secticn, we report brieflythe most important results obtained by various 
researchers. ln particular, each subsection deals with the work performed in 
a specific laboratory. 

3.1 BBN (U.S.A.) [2.5] 

Selected coders: 

- Adaptive Predictive Coding with Noise Shaping (APS-NS), bit rate of 16 
kbit/s, 

- Continuously Variable Slope Delta modulation (CVSD) at 16 kbit/s, 

- APC with Segmented Ouantizer (APC-SO) at 9.6 kbit/s, 

- Base Band Coder (BBC) at 9.6 kbitls, 

- LPC vocoder with 10th order prediction filter (LPC-1 O) at 2.4 kbiVs. 

Subjective measure: 

- Diagnostic Acceptability Measure (DAM). 

Objective measures: 

- log area ratio, 

- reftection coefficients, 

- predictor coeffidents, 

- log likelihood, 

- linear spectral distance, 

- frequency-variant spectral distance, 

- short-time banded SNR. 

Resutts: FSVD has the best correlation (0.997) for the waveform coders, 
followed by STB-Snr (0.994). 

----------------~----~~--

-
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3.2 BeU Laboratories (U.SA.) [6-11]
 

Selected coders:
 

- Adaptative Differential PCM (ADPCM) with Jayant adaptive quantizer
 
and fixed pr ctor, bit rates of 9.6, 16, and 24 kM/s,
 

- ADPCM wtth forward adaptive quantizer and forward adaptive bth order
 
predictor, bit rates of 9.6, 18, and 26 kbit/s,
 

- Sub Band Coder (SBC) at bit rates of 9.6,16, and 24 kbiVs,
 

- Adaptive Transfonn Coder (ATC) at bit rates of 9.6, 16, and 24 kbit/s.
 

Subjective measure:
 

- Absolute category rating with Mean Opinion Score (MOS).
 

Objective measures:
 

- SNR, SNRseg,
 

- frequency weighted SNRseg,
 

- log Iikelihood,
 

- articulatory bandwidth.
 

Results: A combined measure, based on a modified 109 likelihood and the
 
percent articulatory bandwidht, predicts well the individual preferences in a 
given coder as well as the inter-relationships between coders. 

3.3 BeU Northern Research (Canada) [12-14]
 

Selected coders:
 

- Il-Iaw PCM (11 =255), from 4 up to 8 bit/sample,
 

- Adaptive Delta Modulation (ADM) at bit rates of 16 and 32 kbiVs,
 

- ADPCM, with either adaptive or fixed 3rd order predictor, at 32 kbiVs,
 

- APC at 16 kbiVs,
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- Residual Excited Unear Predictive coder (RELP) at 4.8 kbit/s,
 

- LPC vocoder at 2.4 kbit's.
 

Subjective measures:
 

- píeference test (ABAB, BABAsequencp.s),
 

-MOS.
 

Objective measures:
 

- SNR, granular SNR, overload SNR, subjective SNR,
 

- coherence function.
 

Results: The subjective SNR, defined as the SNR of that reference signal
 
whiet..;, on the average, is equally preferred to the test signal by a group of 
listeners, can be used only for waveform coders of good quality.. The correla­
tion obtained using the coherence function over PCM, AOPCM and APe is 
0.96. 

3.4 CSELT Otaly) [15-17] 

:3elected coders:
 

- AOPCM, with fixed predictor, at 24 and 32 kbit/s,
 

- APC-NS based on FFT.
 

Subjective measure:
 

- MOS on a 9 pcint scale.
 

Particular condition:
 

- AOPCM with channel bit errar rate (BER) equal to 1/256 and 1/32.
 

ObjectivE) measures:
 

- SNR, SNRseg,
 

- frequency weighted SNRseg,
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- log likelihood, 

- severaJ linear combinations of these measures. 

Resutts: The best prediction scores are achieved by a gain-compensation 
SNRseg, and aJso by a spectral signal-tcrdistortion ratio. A linear combination 
ofthese eas es has been used to predict ratings of APC-NS. 

An attem o es 'mate the quality of ADPCM coders through a measuring 
sys-tem, based artificial signals and identification procedures, is descri­
bed in [17]. 

3.5 Georgia nstitute of Technology (U.SA.) [16-26]
 

Selected codefs:
 

- Adaptative P APCM) , 6 conditions,
 

-ADPCM, 12 co 'ons,
 

- APC, 6 con . ns,
 

- ADM, 6 condi 'ons,
 

- CVSD, 6 concfrtions,
 

- SBe, 6 conditions,
 

- ATe, 6 conditions,
 

- LPC vocoder, 6 conditior;s,
 

- Voice Excited Vocoder (VEV), 12 conditions,
 

Particular conditions: more than 200 conditions with controlled distortions,
 
such as low-pass, high-pass and band-pass filtering, center c1ipping, c1ipping, 
white noise, echo, etc., have been added to the database. 

Subjective measure: 

-DAM. 
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Objective measures:
 

- SNR, SNRseg,
 

- spectraJ distance,
 

- energy ratio,
 

- PARCOR coefficients,
 

- log area ratio,
 

- frequency-variant banded SNR,
 

- spectraJ peak distortion. 

Results: A very good quality measure for waveforms coders and noise 
distortions is based on the frequency-variant banded SNR, which has a 
correlation factor of 0.93. The best simple measure is the spectral peak 
distortion, that gives the highest correlation factor (0.78) in comparison to any 
other simple measure previously tested on the Georgia Tech speech databa­
ses. 

3.6 NTT (Japan) [27-30] 

Selected coders: 

- I-l-Iaw PCM (I-l =255), frem 4 up to 8 bit/sampie, sampling frequency 
Fs =8 kHz, 

- AOPCM with a 2-pole 6-zero adaptive predictor and a backward adaptive 
dynamic locked quantizer (OLO) J from 2 up to 4 bit/sampIe, Fs =8 kHz, 

- AOPCM with a fixed 1st order predictor (coefficient =0.98) and a back­
ward adaptive quantizer (Jayant's algorithm), from 2 up to 4 bit/sample, 
Fs =8kHz, 

- ATC with dynamic bit aJlocation among OCT coefficients, bit rates of 9.6, 
12, 16 and 24 kbit/s, 

- APC with Adaptive Bit allocation in time and frequenCf domains (APC­
AB), split-band scheme with long term predictor (Honda-ltakura design), bit 
rates of 9.6, 12, 16 and 24 kbit/s. 
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Particular conditions:
 

- PCM with channel BER equaJ to 0.001,
 

- PCM overload.
 

Subjective measure:
 

-~ .....- absolute category rating, giving MOS on a 5-point scale,
 

Objective measures:
 

- SNR, SNRseg,
 

- spectraJ distortion based on a 256-point FFT,
 

- cepstral distance,
 

- logarithmmic spectral envelope distance, weighted by a cosh function,
 

-Iikelihood ratio (LHR),
 

- peak weighted LHR.
 

Results: Frequency domain measures have better correspondence (O MOS
 
than time domain ones; the cepstral distance has the best correlation (0.929), 
excluding BER and overload conditions. 

3.7 Tokyo Institute of Technology (Japan) [31] 

Selected coder: 

- cepstral vocoder at a bit rate of 2.8 kbit/s, Fs =10kHz.
 

Subjective measure:
 

- preference score (pair comparison test).
 

Objective measure:
 

- Spectral distortion.
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Results: There is a good eorrelation between preference seares and the 
overall spectral distortion caused by the frame perioel, eepstrum order and 
quantization noise. 

4. CONCLUDING REMARKS 

The large number of objective measures available 50 far in the literature 
represents an important result of the notable effort provided by many re­
searchers in this field. However, the major problems continues to be the 
eap2bility of a given objective measure to perform adequately well aeross a 
large sampie of ali distortions and ali talkers. At the moment, based on 
experimental results and educated guess, we can saytharthis issue is twofold, 
sinee it involves both the statistieal reliability of the objective measure and the 
correlation with subjective ratings. As far as the former point is eoncerned, it 
5eems that the reliability is a very strong feature 01 many objective measures, 
while the latter issue is extremely subtle and deserves a careful examination. 

Basically, the potential of an objective measure can be improved by tailoring 
its parameters on specific classes of distortions but this leads, unfortunately, 
to specialized quality estimators, losing generality and universality. On the 
other hand, a more general measure, devised to handle awide range of 
speech distortions, will exibit a comparatively lower performance, while 
requiring a huge subjective database to set the controlling parameters pro­
perly. ln this light, it is clear that a substantial performanee improvement could 
be provided by new measures designed aeeording to an effective and 
advanced moelel ofthe speech perception process, ratherthan a signal fidelity 
eriterion. 

A few examples ofmeasures conceived towards this goal have been reviewed 
in the preceding sections, but further enhancements are still needed to 
improve the quality prediction capability across a large set of different condi­
tions and relevant distortions. This is a most basic step to be considered in 
the Mure researeh directions. 

ln conclusion, therefore, objective measures must be selected and used 
earefully, exploiting their usefulness for speech codec optimization and testing 
but, a1so, bearing in mind their eurrent limitations. 
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